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Abstract

l.earning is an important aspect of intelligent behavior.
Unfortunately, learning rarely corm-x for free. Tech-
niques developed by machine learning can improve
the abilities of an agent but they often entail consider-
able computational expense, Furthermore, there is an
inherent tradeoff between the power and efficiency of
learning, More powerful learning approaches require
greater computational resources. This poses a dilen~-
ma to a learning agent that must act in the world under
a variety of resource constraints. This paper investi-
gates the issues involved in constructing a rational
learning agent. Drawing on work in decision-theory
we describe a framework for a rational agent that em-
bodies learning actions that can modify its own behav-
ior. The agent must posses deliberative capabilities to
assess the relative merits of these actions in the larger
context of its overall behavior and resource con-
straints. We then sketch several algorithms that have
been developed within this framework.

1. INTRODUCTION

A principal component of intelligent behavior is an ability to
learn. In this article we investigate how machine learning ap-
proaches relate to the design of a rational learning agent.  This
is an entity that must act in the world in the service of goals and
includes among its actions the ability to change its behavior
by learning about the world. There is a long tradition of study-
ing goal directed action under variable resource constraints in
economics [Good71 ] and the decision sciences [Howard70],
and this forms the foundations for artificial intelligence ap-
proaches to resource-bounded computational agents
[Doyle90,  Horvitz89, Russel189]. However, these AI ap-
proaches have not addressed many of the issues involved in
constructing a learning agent. When learning has been con-
sidered, it has involved simple, unobtrusive procedures like
passively gathering statistics [Wefald89] or off-line analysis,
where the cost of learning is safely discounted [Horvitz89].
Many machine learning approaches require extensive re-

sources and may force an agent to redirect its behavior tenl-
porarily  away from satisfying its goals and towards explorato-
ry behavior. Thus, more recent work has begun to consider the
problem of developing techniques that can make a reasoned
compromise between learning and acting, and more generally,
to consider the relationship between learning and the overall
goals and resource constraints of a rational agent [desJar-
dins92,  Gratch93b,  Provost92].

Deeiding when and how to learn is made difficult by the real-
ization that there is no “universal” learning approach. Ma-
chine learning approaches strike some balance bet ween two
conflicting objectives. First is the goal to create powerful
learning approaches to facilitate large performance improve-
ments. Second is the need to restrict approaches for pragmatic
considerations such as efficiency. Learning algorithms in~ple-
ment some bias which embodies a particular compromise be-
tween these objectives. Unformately, in what is called the
static biasproldem,  there is no single bias that applies equally
well across all domains, tasks, and situations [Provost92],  As
a consequence there is a bewildering array of learning ap-
proaches with differing tradeoffs between power and prag-
matic considerations.

This tradeoff poses a dilemma to any agent that must learn in
complex environments under a variety of resource con-
straints. Practical learning situations place varying demands
on learning techniques. One case may allow several CPU
months to devote to learning; another requires an immediate
answer. For one case training examples are cheap; in another,
expensive procedures are required to obtain data. An agent
wishing to use a machine learning approach must decide
which of many competing approaches to apply, if any, given
its current circumstances. This evaluation is complicated be-
cause techniques do not provide feedback on how a given
tradeoff plays out in specific domains. This same issue arises

1. Gerald Tesauro  noted that his reinforcement learning
approach to learning strategies in backgammon required a
month of learning time on an IBM RS/6000 [Tesauro92].
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Figure 1a: Standard decision-theoretic view.
Learning is considered external to the agent.

in a number of different learning problems. In statistical mod
cling the issue appears in how to choose a mode] that balances
the tradeoff between the fit to the data and the number of ex-
amples required to reach a given level of predictive accuracy
[AI&STAT93],  In neural networks the issue arises in the
choice of network architecture (e.g. the number of hidden
units). The tradeoff is at the core of the field of decision analy-
sis where formalisms have been developed to determine the
value of experimentation under a variety of conditions [Ho-
ward70].

This article outlines a decision-theoretic formalism with
which to view the problem of flexibly biasing learning behav-
ior. A learning algorithm is assumed to have some choice in
how it can proceed and behavior in a given situation is deter-
mined by a rational cost-benefit analysis of these alternative
“learning actions.” A chief complication in this approach is
assessing the consequences of different actions in the context
of the current situation. Often these consequences cannot be
inferred simply on the basis of prior information. The solution
we outline in this article uses the concept of adaptive bias. In
this approach a learning agent uses intermediate information
acquired in earlier stages of learning to guide later behavior.
We instantiate these notions in the area of speed-up learning
through the implementation of a “speed-up learning agent.”
The approach automatically assesses the relative benefits and
costs of learning to improve a problem solver and flexibly ad-
justs its tradeoff depending on the resource constraints placed
upon it.

2. RATIONAI.lTY  IN LEARNING

Decision theory provides a forma] framework for rational de-
cision making under uncertainty (see [Berger80]).  Recently,
there has been a trend to provide a decision-theoretic interpre-
tation for learning algorithms [Brand91, Gratch92,  Grein-
er92, Subramanian92]. The “goal” of a learning system is to
improve the capabilities of some computational agent (e.g. a
planner or classifier). The decision-theoretic perspective
views a learning system as a decision maker, The learning sys-
tem must decide how to improve the computational agent with
respect to a fixed, but possibly unknown, distribution of tasks.
The learning system represents a space of possible transfor-
mations to the agent: a space of alternative control strategies
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Figure 1 b: A learning agent. Learning is
under the direct control of the agent.

for a speed-up learning system or a space of possible concepts
for a classification learning system. Each of the transforma-
tions imparts some behavior to the computational agent on the
tasks it performs. The quality of a behavior is measured by a
utilifyjiurrctiou that indicates how well the behavior performs
on a given task. The expected utility of a behavior is the aver-
age utility over the fixed distribution of tasks. Ideally, a learn-
ing system should choose the transformation that maximizes
the expected utility of the agent, To make this decision, the
learning system may require many examples from the envi-
ronment to estimate empirically the expected utility of differ-
ent transformations.

1.1 I.(!arning an Agent vs. a I.earning  Agent

Figure 1a illustrates this view of learning systems. There is a
computational agent that must interact with an environment.
The agent exhibits some behavior that is characterized by the
expected utility of its actions with respect to the particular en-
vironment. For example the agent may bean automated plan-
ning system, the environment a distribution of planning prob-
lems, and the behavior characterized by the average time
required to produce a plan. A learning algorithm decides,
from a space of transformations, how best to change the be-
havior of the agent, This view clarifies the purpose of learn-
ing: the learning algorithm should adopt a transformation that
maximizes the expected utility of the agent’s behavior, This
view does not, however, say anything about how to balance
pragmatic considerations. The utility of the agent is defined
without regard to the learning cost required to achieve that lev-
el of performance. Pragmatic issues are addressed by an exter-
nal entity through the choice of a learning algorithm.

Figure lb illustrates the view we explore in this article. Again
there is a computational agent that must interact with an envi-
ronment. Again the agent exhibits behavior that is character-
ized by the expected utility of its actions. The difference is that
the decision of what and how to learn is under control of the
agent, and consequently, pragmatic considerations must also
be assessed by the agent, and cannot be handed over to some
external entity. In addition to normal actions, it can perform
learning actions that change its behavior towards the environ-
ment. A learning action might involve running a machine
learning program as a black box, or it might involve direct



control over low-level learning operations – thereby giving
the agent more flexibility over the learning process. The cx-
penseof  learning may WCII  negatively impact expcctcd u[ility.
Thcrcforc, the learning agent must bc reflective [IIorvitz89].
This means it must possess the means to reason about both the
benefits and costs of possible ]carning  actions. As an example,
such a learning agent could be a automated planning system
with learning capabilities. After solving each plan this systcm
has the opporlunit y to expend resources analyzing its behavior
for possible improvements. The decision of what and how to
learn must involve consideration of how the improvement and
thccomputational expense of learning impact the average util-
ity exhibited by the agent,

Note that the sense of utility differs in the two views. In the
first case, utility isdcfincd  independent oflearningcost.  In the
second case, utility must explicitly encode the relationship bc-
twccn the potential benefits and costs of learning actions. For
example, the average time to produce a plan may bc a reason-
able way to characterize the behavior of a non-learning agent
but it CIOCS not suffice to characterize the behavior of a learning
agent. There is never infinite time to amortize the cost of
]carning.  An agent operates under finite resources and learn-
ing actions are only reasonable if the improvement they pro-
vide outweighs the investment in learning cost, given the re-
source constraints of the present situation. These two senses
of utility are discussed in the rational decision making litera-
ture. Following the terminology of Good we refer to a utility
function that does not reflect the cost of learning as ~pe I util-
ity function [Good71 ]. A utility function that dots reflect
learning cost is a ~pc 11 utility function. The Type I vs. ~pc
11 distinction is also referred to as substantive vs. procedural
utility [Sin~on76] or object-level vs. comprehensive utility
[Horvitz89],  Wc arc interested in agents that assess Type 11
utility.

1.2 lhunplcs of ~pc II Utility

‘I}pe I functions can be used in realistic learning situations
only after some human expert has assessed the current re-
source constraints, and chosen a learning approach to reflect
the appropriate tradeoff. The decision-theoretic view is that
the decision making of the human expert can be modeled by
a Type 11 utility function. Thus, to develop a learning agent
wc must capture the relationship between benefit and cost that
wc believe the human expert is using. This, of course, will
vary with different situations, We discuss a few likely situa-
tions and show how these can bc modeled with Type 11 func-
tions.

Speed-up learning is generally cast as reducing the average
amount of resources needed by an agent to solve problems.
The process of learning also consumes resources that might
otherwise bc spent on problems solving. A Type 11 function
must relate the expense of this learning investment and its po-
tential return. If wc are restricted to a finite resource limit, a

natural goal is to evaluate the behavior of the learning agent
by how many problems it can solve within the resource limit.
A learning action is only worthwhile if Icads to an increase in
this number. In this case the expcctcd Type II utility corre-
sponds to the expcctcd number of problems it can solve given
the resource limit. If we are given a finite number of problems
to solve, an alternative relationship might be to SOIVC them in
as few resources as possible. In this case expected Type 11
would be the expected resources (including learning re-
sources) required to solve the fixed number of prob]ems.
Learning actions should bc chosen only if they will reduce this
value.

Another situation arises in the case of learning a classifier
where there is great expense in obtaining training examples.
The presumed benefit of a learned classifier is that it enables
an agent to make classifications relevant to achieving its
goals. Obviously, the more accurate the classifier, the greater
the benefit. It is also generally the case that a more accurate
classifier will result by increasing the richness of the hypothe-
sis space – increasing the number of attributes in a decision
tree, increasing the number of hidden units in a neural net-
work, or increasing the number of parameters in a statistical
modeling procedure. While this improves the potential bene-
fit, adding flexibility will increase the number of examples re-
quired to achieve a stable classifier. A Type 11 utility function
should relate the expected accuracy to the cost of obtaining
training examples. A learning system should then adjust the
ftcxibility (attributes, hidden units, etc.) in such a way to max-
imize this Type II function.

1.3 Adaptive Bias

In our model an agent must bc able to assess the costs and
benefits of alternative learning actions as they relate to thccur-
rent learning task. Occasionally it maybe possible to provide
the learning agent with enough information in advance to
make such determinations (e.g. unijiirmities are one source of
statistical knowledge that allows an agent to infer the benefits
of using a given bias [desJardins92]).  Unfortunately, such in-
formation is frequently unavailable. We introduce the notion
of adaptive bias to enable flexible control of behavior in the
presence of limited information on the cost and benefit of
learning actions. With adaptive bias a learning agent esti-
mates the factors influences cost and benefit as the learning
process unfolds. Information gained in the early stages of
learning is used to adapt subsequent learning behavior to the
characteristics of the given learning context.

3. RATIONAI. SPEED-UP LIZARNING

The notion of a rational learning agent outlined in Section
NO TAG is quite general. Many interesting, and more n~an-
agcablc  learning problems arise from imposing assumptions
on the general framework. We consider one specialization of
these ideas in some detail in this section, while the following
sect ion relates several alternative approaches.



Oneofourprimary  interests is in area of speed-unlearning and
therefore we present an approach related to this class of lcarn-
ingproblems.  Weadopt the following fiveassumptions  tothe
general model. (1) An agent is viewed as a problem solvcrthat
must SOIVC  a sequence of tasks provided by the environment
according to a fixed distribution. (2) The agent possesses
learning actions that change the average resources required to
solve problems. (3) Learning actions must precede any other
actions. This follows thetypical characterization of the spccd-
up learning paradigm: there is an initial learning phase where
the learning system consumes training examples and produces
an improved problem solver; this is followed by a utilization
phase where the problem solver is used repeatedly to solve
problems. Once stopped, learning may not be returned to. (4)
The agent learns by choosing a sequence of learning actions
and each action must (probabilistically) improve expected
utility. Asaconsequence,  theagentcannot  choose tomakcits
behavior worse in the hope that it may produce larger subse-
qucntimprovcments.  (5) Learning actions haveaccess  toan
unbounded number oftraining  examples. Forany  given run
of tbe system, this number will be tinitebccause  the agent
must act under limited resources. This is reasonable for speed-
up learning techniques are unsupervised learning techniques
sothccxamples  donotneed  to declassified. Together, these
assumptions define a sub-class of rational learning agents we
call one-stage speed-up learning agents.

Given this class oflearning  agents, their -behaviorisdeter-
mined by the choice of a Type II utility function, We have de-
veloped algorithms for two alternative characterizations of
Type II utility that result from different views on how to relate
benefit and cost. These characterizations essentially amount
to ~pc 11 utility schemas – they combine some arbitrary ~pe
I utility function and an arbitrary characterization of learning
cost into a particular Type II function. Our first approach,
RASL, implements a characterization which leads the system
to maximize the number of tasks it can solve with a fixed
amount of resources. A seeond approach, RIBS, encodes a
different characterization that leads the system to achieve a
fixed level of benefit with a minimum of resources. Both ap-
proaches are conceptually similar in their use of adaptive bias,
so we describe RASL in some detail to give a flavor of the
techniques,

RAS1. (for RAtional Speed-up I%arner) builds upon our pre-
vious work on the COMPOSER learning system, COMPOS-
ER is a general statistical framework for probabilistically
identifying transformations that improve Type I utility of a
problem solver [Gratch91,  Gratch92].  COMPOSER has
demonstrated its effectiveness in artificial planning domains
[Gratch92]  and in a real-world scheduling domain
[Gratch93a].  The system was not, however, developed to sup-
port rational learning agents. It has a fixed tradeoff for balanc-
ing learned improvements with the cost to attain them and pro-
vides no feedback, Using the low-level learning operations of

the COMPOSER systcm,  RASL incorporates decision nlak-
ing procedures that provide flexible control of learning in re-
sponse to varying resource constraints. RASI. acts as a learn-
ing agent that, given a problem solver and a fixed resource
constraint, balances learning and pfoblem  solving with the
goal of maximizing expected Type 11 utility. In this context of
speed-up learning resources are defined in terms of conlputa-
tional time, however the statistical model applies to any nu-
meric measure of resource use (e.g., space, monetary cost).

1.4 Overview

RASL is designed in the service of the following Type 11 goal:
Given a problem solver and a known, fixed amount of re-
sources, solve as many problems as possible within the re-
sources, RASL can start solving problems immediately. Al-
ternatively, t}le agent can devote some resources towards
learning in the hope that this expense is more than made up by
improvements to the problem solver. Type II utility corre-
sponds to the number of problems that can be solved with the
available resources, The agent should only invoke learning if
it increases the expeeted number of problems (ENP) that can
be solved. RASL embodies decision making capabilities to
perform this evaluation.

The expected number of problems is governed by the follow-
ing relationship:

available resources after learning
ENP =

avg. resources to solve a problcm after learning

The top term reflects the resources avaiIable for problems
solving. If no learning is performed, this is simply the total
available resources. The bottom term reflects the average cost
to solve a prob]cm with the learned problem solver. RASI. is
reflective in that it guides its behavior by explicitly estimating
Z?NP. To evaluate this expression, RASL must develop esti-
mators for the resources that will be spent on learning and the
performance of the learned problem solver,

Like COMPOSER, RASL adopts a hill-climbing approach to
maximizing utility. The system incrementally learns transfor-
mations to an initial problem solver. At each step in the search,
a transformation generator proposes a set of possible changes
to the current problem solver.2 The system then evaluates
these changes with training examples and chooses one trans-
formation that improves expected utility. At each step in the
search, RASL has t wo options: ( 1 ) stop learning and start solv-
ing problems, or (2) investigate new transformations, choos-
ing one with the largest expected increase in ENP. In this way,

2. The approach provides a framework that can incorpo-
rate varying mechanisms to proposing changes. We have
developed instantiation of the framework using PRODI-
GY/EIII,’s  proposed control rules [Minton88],  STATIC
proposed control rules [}3tzioni91 ] and a library of expert
proposed scheduling heuristics [Gratch93a].



the behavior of RASL js driven by jts own estimate of how
learning influences the expected number of problems that may
bc solved. The system only continues the hill-climbing search
as long as the next step k expected to hnprove  the Type 11 util-
ity. RAS1. proceeds through a series of decisions where each
action is chosen to produce the greatest increase jn ENP.
Iiowcver, as it is a hill-climbing system, the ENP exhibited by
RAS1. will bc locally, and not necessarily globally, maximal.

1.5 Algorithm Assumptions

RASL relies on several assumptions. The most important as-
sumption relates to its reflective abilities. The COS{ of learning
actions consists of three components: the cost of deliberating
on the effectiveness of learning, the cost of proposing trans-
formations, and the cost of evaluating proposed transformat-
ions. When RASLdecides on the utility of a learning action,
it should account for all of these potential costs. Our imple-
mentation, however, relies on an assumption that the cost of
evaluation dominates other costs. This assumption js reason-
able in the domains COMPOSER has been applied. The pre-
ponderant learning cost lies jn the statistical evaluation of
transformations, through the large cost of processing each ex-
ample problcm — this jnvolves invoking a problem solver to
solve the example problem. The decision making procedures
that implement the Type II deliberations involve evaluating
relatively simple mathematical functions. This assumption
has the consequence that RASL does not account for some
overhead in the cost of learning, and under tight resource con-
straints the system may perform poorly. RASL also embodies
the same statistical assumptions adopted by COMPOSER.
The statistical routines must estimate the mean of various dis-
tribution. While no assumption is made about the form of the
distributions, we make a standard assumption that the sample
mean of these distributions is normally distributed.

1.6 IMirmding EAT

The core of RASI,’S rational analysis is a statistical estimator
for the ENP that results from possible learning actions. This
section describes the derivation of this estimator. At a given
decision point, RASI. must choose between terminating
learning or investigating a set of transformations to the current
problem solver. RASL uses COMPOSER’S statistical proce-
dure to identify beneficial transformations. Thus, the cost of
learning is based on the cost of this procedure. After review-
ing some statistical notation we describe this statistical proce-
dure. We then develop from this statistic a estimator for ElVP.

1,ct X bc a random variable, An observation of a random vari-
able can yield one of a set of possible numeric outcomes where
the likelihood of each outcome is determined by an associated
probability distribution. Xi is the ith observation of X. EX de-
notes the expected value of X, also called the mean of the dis-
tribution. Yn is the sanrple mean and refers to the average of

n observations of X. ~n is a good estimator for EX. Variance
is a measure of the dispersion or spread of a distribution. We

1 $(X-X.)’  ,asanestima-usc the sanrple variance, S’” = —
n

i.1  -

tor for the variance of a distribution.

The function @(x) = ~(l,~)exl{-0.5Y]dyi  stl]ecu*I)ula-
.03

tivc distribution function of the standard normal (also called
standard gaussian)  distribution. @(x) is the probability that a
point drawn randomly from a standard normal distribution
will bc less than or equal to x. This function plays a important
role in statistical estimation and jnference.  The Central Limit
Theorem shows that the difference between the sample mean
and true mean of an arbjtrary distribution can be accurately
represented by a standard normal distribution, given suffi-
ciently large sample. In practice we can perform accurate sta-
tistical hfercnce  using a “normal approximation.”

1.6,1 COMPOSER’s Statistical Evaluation

Let T be the set of hypothesized transformations. Let PE de-
note the current problem solver. When RASL processes a
training example it determines, for each transforrnation, the
change in resource cost that the transforrnation would have
provided if jt were jncorporatcd  into PE. This is the difference
in cost between solving the problem with and without incorpo-
rating the transformation into PE, This is denoted Ari(tlPE)

for the ith training example. Training examples are processed
incremental y. After each example the system evaluates a sta-
tistic called a stopping  rule. The particular rule we use was
proposed by Arthur Nrldas  and is called the Nrfdas stopping
rule [Nadas69]. This rule determines when enough examples
have been processed to state with confidence that a transfor-
mation will help or hurt the average problem solve speed of
PE.

After processing a training example, RASLevaluates  the fol-
lowing rule for each transforrnation:

n 2 ‘0 ‘ND [zFn(:PE)l’  s : ‘ ‘“’”  “(a) ‘* ‘1)

where r~ is a small finite integer indicating an initial sample
size, n is the number of examples taken so far, js the transfor-
mation’s average improvement, is the observed variance in

the transformation’s improvement, and 8 is a confidence pa-
rameter. If the expression holds, the transformation will
speed-up (slow down) PEif is positive (negative) with confi-

dence 1-/5, The number of examples taken at the point when
Equation 1 holds is called the stoppittg time associated with
the transformation and is denoted S7’(tlPE).



1.6.2 Estimating Stopping Times

Given that we arc using the slopping rule in Ilquation  1, the
cost of learning a transformation is the stopping time for that
transformation, times the average cost to process an example.
Thus, one element of an estimate for learning cos[ is an esti-
mate for stopping times. In Equation 1, the stopping time as-
sociated  with a transformation is a function of the variance, the
square of the mean, and the sample size n. We can estimate
these first two parameters using a small initial sample of to gx-

amples: a n d  =.(dPE) = &.O(tlPE) . We can estimate the

stopping time by using these estimates, treating the inequality
in Equation 1 as an equality, and solving for n. The stopping
time cannot be less than them initial examples so the resulting
estimator is:

‘Tno(’’pE)=’’lax{”O [U2FS$3’1} ‘2)
where is the average improvement in Type I utility that re-

sults if transformation t is adopted, is the variance in this ran-

dom variable, and @(a) = &(21Tl).

1,6.3  Learning Cost

llach transformation can alter the expected utility of a per-
formance element. To accurately evaluate potential changes
we must allocate some of the available resources towards
learning. Under our statistical formalization of the problem,
learning cost is a function of the stopping time for a transfor-
mation, and the cost of processing each example problem.

In the general case, the cost of processing thejth problem de-
pends on several factors. It can depend on the particulars of
the problcm. In can also depend on the currently transformed
performance element, PEj. For example, many learning ap-
proaches derive utility statistics by executing (or simulating
the execution) of the performance element on each problem.
Finally, as potential transformations must be reasoned about,
learning cost can depend on the size of the current set of trans-
formations, 1.

Let AJT, PE) denote the learning cost associated with thcjth
problem under the transformation set T and the performance
element PE. The total learning cost associated with a transfor-
mation, t, is the sum of the per problem learning costs over the
number of examples needed to apply the transformation:

1.6.4 llNP Estimator

We can now describe how to compute this estimate for indi-
vidual transformations based on an initial sample of no exanl-
pies. Let R be the available resources. The resources ex-
pended learning a transformation can be estimated by

multiplying the average cost to process an example by the
stopping time associated with that transformation: . The av-

erage resource usc of the Iearncd performance element can be
estimated by combining estimates of the resource use of the
current performance clement and the change in this use pro-

vided by the transformation: F.O(PE)  – ~.o(dPE) , Con~bin-

ing these estimators yields the following estimator for the ex-
pected number of problems that can bc solved after learning
transformation t:

EfiP.o(R, WE)=
R -~.,(t, T, PE) X Sino(dPE)

(3)
rno(PE)  – Gno(tlPE)

Space precludes a description of how this estimator is used but
the RASL algorithm is listed in the Appendix, Given the
available resources, RASI. estimates, based on a small initial
sample, if a transformation should bc learned. If not, is uses
the remaining resources to solve problems. If learning is ex-
pected to help, RASL statistically evaluates competing trans-
formations, choosing the one with the greatest increase in
ElVP. It then determines, based on a small initial sample, if a
new transformation should be learned, and so on.

4. ]WIPIRICAI,  EVALUATION

RASL’S mathematical framework predicts that the system can
appropriately control learning under a variet y of t i me pressur-
es. Given an initial problem solver and a fixed amount of re-
sources, the system should allocate resources between learn-
ing and problem solving to solve as many problems as
possible. The theory that underlies RASL makes several pre-
dictions that we can evaluate empirically, (1) Given an arbi-
trary level of initial resources, RASL should solve a greater
than or equal to number of problems than if we used all avail-
able resources on problem solvings. As we increase the avail-
able resources, RASL should (2) spend more resources learn-
ing, (3) acquire problem solvers with lower average solution
cost, (4) exhibit a greater increase in the number of problems
that can be solved,

Wc empirically test these claims in the real-world domain of
spacecraft communication scheduling. The task is to allocate
communication requests between earth-orbiting satellites and
the three 26-meter antennas at Goldstone,  Canberra, and Ma-
drid. These antennas make up part of NASA’s Deep Space
Network. Scheduling is currently performed by a human ex-
pert, but the Jet Propulsion Laboratory (JPL) is developing a
heuristic scheduling technique for this task. In a previous ar-
ticle, we describe an application of COMPOSER to in~prov-
ing this scheduler over a distribution of scheduling problems.

3. RASL pays an overhead of taking ?W initial examples
to make its rational deliberations. If learning provides no
benefit, this can result in RASL solving less examples
than a non-learning agent.



COM1’OSM<  acquired search control heuristics that im-
proved the average time to produce a schedule [Gratch93a].
We apply RAS1. to this domain to evaluate our claims.

COMPOSER explored a large space of heuristic search strate-
gies for the scheduler using its statistical hill-climbing tech-
nique. In the course of the experiments we constructed a large
databascof  statistics on how theschedulerperformed  with dif-
ferent search strategies over many scheduling problems. We
usc this database to reduce the computational cost of the cur-
rent set of experiments. Normally, when RASL processes a
training example it must evoke the scheduler to perform an ex-
pensive computation to extract the necessary statistics. For
these experiments we draw problems randomly from the data-
base and extract the statistics already acquired from the pre-
vious experiments, RASL is “told” that the cost to acquire
these statistics is the same as the cost to acquire them in the
original COMPOSER experiments.

A learning trial consists of fixing an amount of resources,
evoking RASL, and then solving problems with the learned
problem solver until resources are exhausted. This is com-
pared with a non-learning approach that simply uses all avail-
able resources to solve problems. Learning trials are repeated
multiple times to achieve statistical significance. The behav-
ior of RASL under different time pressures is evaluated by va-
rying the amount of available resources. Results are averaged
over fifly learning trials to show statistical significance. We
measure several aspects of RASL’S behavior to evaluate our
claims. The principle component of behavior is the number of
problems that are solved. In addition we track the time spent
learning, the Type I utility of the learned scheduler, and the
number of hill-climbing steps adopted by the algorithm.
RASI. has two parameters. The statistical error of the stop-
ping rule is controlled by 8, which we set at 5%. RASL re-
quires an initial sample of size no to estimate ENP. For these
experiments we chose a value of thirty. RASL is compared
against a non-learning agent that uses the original expert con-
trol strategy to solve problems. The non-learning agent de-
votes all available resources to problem solving.

The results are summarized in Figure 2. RASL yields an in-
crease in the number of problems that are solved compared to a
non-learning agent, and the improvement accelerates as the
resources are increased, As the resources are increased,
RASI. spends more time in the learning phase, taking more
steps in the hill-climbing search, and acquiring schedulers
with better average problem solving performance.

The improvement in ENP is statistically significant. The
graph of problems solved shows 95% confidence intervals on
the performance of RASL over the learning trials. Intervals
arc not show for the non-learning system as the variance was
ncgligibleoverthe  fifty learning trials. I.ooking at Type I util-
ity, the search strategies learned by RASI.  were considerably
worse than the average strategy learned in our COMPOSER

experiments [Gratch93a]. In this domain, COMPOSER
learned strategies that take about thirty seconds to solve a
scheduling problcm. This suggests that wc must considerably
increase the available resources before the cost to attain this
better strategy becomes worthwhile.” Wc arc somewhat sur-
prised by the strict linear relationship between the available
resources and the learning time. At some point learning time
should level off as learning produces diminishing returns.
However, as suggested by the difference in the schedulers
learned by COMPOSER and RASI., we can greatly increase
the available resources before RASL reaches this limit.

It is an open issue how best to set the initial sample parameter,
~0, The size of the initial sample influences the accuracy of the
estimate of ENP, which in turn influences the behavior of the
system. Poor estimates can degrade RASL’S decision making
capabilities. Making nO very large will increase the accuracy
of the estimates, but increases the overhead of the technique.
It appears that thebcst setting fort~  depends on characteristics
of thcdata, such as the variance of the distribution. Further ex-
perience on real domains is needed to assess the impact of this
sensitivity. There are ways to address the issue in a principled
way (e.g. using cross-validation to evaluate different setting)
but these would increase the overhead of the technique.

5. RELATED WORK

RASL illustrates just one of many possible ways to reason
about the relationship between the cost and benefit of learning
actions. Alternatives seise when we consider different defini-
tions  for Type 11 utility or when there exists prior knowledge
about the learning actions.

In [Chien94] we describe the RIBS algorithm (Rational Inter-
val-llased Selection) for a different relationship between cost
and benefit, In this situation the Type II utility is defined in
terms of the ratio of Type I utility and cost. We introduce a
general statistical approach for choosing, with somefixed lev-
el of confidence, the best of a set of k hypotheses, where the
hypotheses are characterized in terms of some Type I utility
function. The approach attempts to identify the best hypothe-
sis by investigating alternatives over variably priced training
examples, where there is differing cost in evaluating each hy-
pothesis. This problem arises, for example, in learning heuris-
tics to improve the quality of schedules produced by an auto-
mated scheduling system.

This issue of rational learning has frequently been cast as a
problem of bias selection [desJardins92,  Provost92].  A learn-
ing algorithm is provided with a set of biases and some meta-
procedure must choose one bias that appropriately addresses
the pragmatic factors. Provost [Provost92]  shows that under
very weak prior information about bias space, a technique
called iterative weakening can achieve a fixed level of benefit
with near minimum of cost. The approach requires that biases
be ordered in terms of increasing cost and expressiveness.
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desJardins [desJardins92] introduces a class of prior knowl-
edge that can be exploited for bias selection. She introduces
the statistical knowledge called uniformities from which one
can deduce the predictive accuracy that will result from learn-
ing a concept with a given inductive bias. By combining this
with a simple model of inductive cost, here PAGODA algo-
rithm can choose a bias appropriate to the given learning situa-
tion.

RASL focuses on one type of learning cost that was fairly easy
to quantify: the cost of statistical inference. It remains to ap-
ply these concepts to other learning approaches. For example,
STATIC is a speed-up learning approach that generates
knowledge through an extensive analysis of a problem solv-
er’s domain theory [Etzioni91 ]. We might imagine a similar
rat ional control for STATIC where the system performs differ-
ent levels of analysis when faced with different time pressur-

lesults  arc averaged over thirty trials.

es. The challenge is to develop ways of estimating the cost and
benefit of this type of computation. In classification learning,
for another example, a rational classification algorithm must
develop estimates on the cost and the resulting benefit of im-
proved accuracy that result from growing a decision tree.

This work focused on a one learning tradeoff but there are
more issues we can consider. We focused on the conlputation-
al cost to process training examples. We assume an un-
bounded supply of training examples to draw upon, however
under realistic situations we often have limited data and it can
be expensive to obtain more. Our statistical evaluation tech-
niques try to limit both the probability of adopting a transfor-
mation with negative utility and the probability of rejecting a
transformation with positive utility (the difference between
type I and type 11 error). Under some circumstance, one factor
may bc more important than the other. These issues must be



faced by any rational agent that includes learning as one of its
courses of action. Unforhrnately,  learning techniques embody
arbitrary and often unarticulated commitments to balancing
these characteristics. This research takes just onc of many
needed steps towards making learning techniques amenable to
rational learning agents,

6. CONCLUSIONS

Traditionally, machine learning techniques have focused on
improving the utility of a performance element without much
regard to the cost of learning, except, perhaps, requiring that
algorithms bc polynomial. While polynomial run time is nec-
essary, it says nothing about how to choose amongst a variety
of polynomial techniques when under a variety of time pres-
sures. Yet different polynomial techniques can result in vast
practical differences. Most learning techniques are inflexible
in the face of different learning situations as they embody a
fixed tradeoff between the expressiveness of the technique
and its computational efficiency, Even when techniques are
flexible, a rational agent is faced with a complex and often un-
known relationship between the configurable parameters of a
techniqucandits  learning behavior. Wehavepresented an ini-
tial foray into rational learning agents. We presented the
RASL algorithm, and extension of the COMPOSER system,
that dynamically balances the costs and benefits of learning.
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Appendix

lhmction R4SL (PEO, Ro, 6)
[1] i := O; Learn := True; T := Trans@r~~(PEi);  6* := 8/(21Tl);
[2] WHILE T # 0 AND Learning-worthwhile (T, PEi) DO I* should learning continue? */

[3] { continue := True; j := no;  good-rules  :=@;

[4] WHILE T # 0 AND continue DO I* find a good transformation *I
[5] { j := j + 1; Get kj(T,  I’Ei);  VK T: Get A~(tlPE);
[6] significant := Nddas–stopping-rtde  (T, PEj, 8*, j);

[7] T:= T – significant;

[8] WHEN 3 ~ significant: ~,@PEi)  >0 /* beneficial transformation found */

[9] ( good-rules:= good-rules U (I E significant~,{tlPEJ  > 0]

[10] W H E N  n&~x{EfiP,<R/, tlPEi)] s [
m a x  E~P,<Ri,  tlPEi)

I
/* no better transformation */

tEsiRni.licmf

[11] best := t e significant : VW G significant, ~j(tlPEi)  > &j<wlPEi) ;

[12] PEi+l := Apply(best, PEi); T := Transjorms(PEi+l);  8* := N(21TI);  /*adopt it*/

[13] Ri+l := Ri – j x ~j(T, PEi); i := i + 1; continue := False; ) } }
[14] Solve-problems-with-remaining-resources (PQ)

]~unction  Learning-worthwhile (T, PE)
[1] FORj=l TOnODO
[2] Get $(T, PE); Vt~ T: Get q(PE), Arj(tlPE);

[ 1[3] R e t u r n  ~; EiPno(Ri,  tlPEi) s ~
F~O(PEi)

Function  Nddas-stopping-nde  (T, PE, 6“, j)

[ }

0

[1] Return
S}(dPE) < ~

t  G T  :  (Gj(flF’E))2  a ’ \
.s,t, @(a) = (1/ b)exp[-  0.5y2]dy = d’ ;

-co

Figure 3: Rational COMPOSER Algorithm


